Thermochromic smart windows with passive radiative cooling regulation


 

From the latest issue of Science magazine (AAAS):
https://www.science.org/doi/10.1126/science.abg0291

Passive radiative cooling technology uses the infrared atmospheric window to allow outer space to be a cold sink for heat. However, this effect is one that is only helpful for energy savings in the warmer months. Wang et al. and Tang et al. used the metal-insulator transition in tungsten-doped vanadium dioxide to create window glass and a rooftop coating that circumvents this problem by turning off the radiative cooling at lower temperatures. Because the transition is simply temperature dependent, this effect also happens passively. Model simulations suggest that these materials would lead to energy savings year-round across most of the climate zones in the United States. —BG

Abstract

Radiative cooling materials spontaneously radiate long-wave infrared (LWIR) to the cold outer space, providing cooling power that is preferred in hot seasons. Radiative cooling has been widely explored for walls and roofs but rarely for windows, which are one of the least energy-efficient parts of buildings. We fabricated scalable smart windows using a solution process giving different emissivity (ε) at high (εLWIR-H of 0.61) and low (εLWIR-L of 0.21) temperatures to regulate radiative cooling automatically while maintaining luminous transparency and near-infrared (NIR) modulation. These passive and independent visible–NIR–LWIR regulated smart windows are capable of dynamic radiative cooling for self-adapting applications across different climate zones.